Today: Short Test Prep to start

2.7: Euler's method

Given $\frac{d y}{d t}=f(t, y), y\left(t_{0}\right)=y_{0}$.
How can we estimate the path of a solution, if we can't solve?

Ideas?
Observe:

1. We have a point on the solutions, $y\left(t_{0}\right)=y_{0}$.
2. And we know the slope, $\frac{d y}{d t}$, at any point.

Thoughts?

Recall:

The equation of a line looks like

$$
y=y_{0}+m\left(t-t_{0}\right)
$$

For a tangent line, the slope is

$$
m=\frac{d y}{d t}=f\left(t_{0}, y_{0}\right)
$$

which we can compute without solving the differential equation!

So we can get the tangent line and take a "small step" in the direction of the tangent line. Then repeat.
(Why a small step?).

Summary (Euler's Method)
To numerically estimate the sol'n:

1. Choosing a step size, h.
2. Compute slope

$$
\frac{d y}{d t}=f\left(t_{0}, y_{0}\right)
$$

3. Use tangent line approx..:

$$
y_{1}=y_{0}+f\left(t_{0}, y_{0}\right) h
$$

4. Repeat steps 2-3 to get y_{2}, and so on.

Briefly,

$$
\begin{aligned}
y_{n+1} & =y_{n}+f\left(t_{n}, y_{n}\right) h \\
t_{n+1} & =t_{n}+h
\end{aligned}
$$

Example:

Given $\frac{d y}{d t}=2 t-y, y(2)=4$.
Estimate $y(4)$ using Euler's method with step size $\mathrm{h}=0.5$.

For comparison (obtained by integrating factors)

Actual solution:
$y(t)=2\left(t+e^{2-t}-1\right)$, so $y(4)=6.270671$

t_{n}	y_{n}	$f\left(t_{n}, y_{n}\right)=$ slope	$f\left(t_{n}, y_{n}\right) h=\Delta y$	
2	4	$2(2)-(4) \quad=0$	$(0)(0.5)=0$	
2.5	4	$2(2.5)-(4)=1$	$(1)(0.5)=0.5$	
3	4.5	$2(3.0)-(4.5)=1.5$	$(1.5)(0.5)=0.75$	
3.5	5.25	$2(3.5)-(5.25)=1.75$	$(1.75)(0.5)=0.875$	
4	$? ? ?$			

Conclusion: $y(4) \approx$

